WWIII is already Nuclear and WWIII hasn’t officially started yet or has it
Breaking: Israel And Saudi Arabia Nuke Yemen…. Video
Tuesday, May 26, 2015 5:43
Published on May 25, 2015
Israeli / Saudi Arabia Tactical Nuclear Strike on Yemen (Neutron Bomb) https://www.youtube.com/watch?v=MlsDA…
(Old School)1 kiloton nuclear blast .https://www.youtube.com/watch?v=1WJTk…
Saudi Nuclear Attack on Yemen using a Tactical Nuke Bunker Buster Warhead !
https://youtu.be/KoRIWXpHoxg
A neutron bomb or officially known as one type of Enhanced Radiation Weapon is a low yield fission-fusion thermonuclear weapon (hydrogen bomb) in which the burst of neutrons generated by a fusion reaction is intentionally allowed to escape the weapon, rather than being absorbed by its other components.
The weapon’s radiation case, usually made from relatively thick uranium, lead or steel in a standard bomb, are instead made of as thin a material as possible to facilitate the greatest escape of fusion produced neutrons.
The “usual” nuclear weapon yield—expressed as kilotons of TNT equivalent—is not a measure of a neutron weapon’s destructive power. It refers only to the energy released (mostly heat and blast), and does not express the lethal effect of neutron radiation on living organisms.
Compared to a pure fission bomb with an identical explosive yield, a neutron bomb would emit about ten times the amount of neutron radiation.
In a fission bomb at sea level, the total radiation pulse energy which is composed of both gamma rays and neutrons is approximately 5% of the entire energy released; in the neutron bomb it would be closer to 40%.
Furthermore, the neutrons emitted by a neutron bomb have a much higher average energy level (close to 14 MeV) than those released during a fission reaction (1–2 MeV).
Technically speaking, all low yield nuclear weapons are radiation weapons, that is including the non-enhanced variant.
Up to about 10 kilotons in yield, all nuclear weapons have prompt neutron radiation as their most far reaching lethal component, after which point the lethal blast and thermal effects radius begins to out-range the lethal ionizing radiation radius.
Enhanced radiation weapons also fall into this same yield range and simply enhance the intensity and range of the neutron dose for a given yield https://www.youtube.com/watch?v=OTE_E…
Tactical nuclear weapon http://en.wikipedia.org/wiki/Tactical…
========================================
Tactical Nuclear Weapon
From Wikipedia, the free encyclopedia
U.S. officials view a W54 nuclear warhead (with a 10 or 20 ton explosive yield) as used on the Davy Crockett recoilless gun. The unusually small size of this tactical nuclear weapon is apparent
A tactical nuclear weapon (or TNW) also known as non-strategic nuclear weapon refers to a nuclear weapon which is designed to be used on a battlefield in military situations. This is opposed to strategic nuclear weapons which are designed to be used against enemy cities, factories, and other larger-area targets to damage the enemy's ability to wage war. Tactical nuclear weapons were a large part of the peak nuclear weapons stockpile levels during the Cold War.
US scientists with a full-scale cut-away model of the W48 155-millimeter nuclear artillery shell, a very small tactical nuclear weapon with an explosive yield equivalent to 72 tons of TNT (0.072 kiloton). It could be fired from any standard 155 mm (6.1 inch) howitzer (e.g., the M114 or M198)
Russian 2S3 Akatsiya 152mm self-propelled artillery, capable of firing a 'ZBV3' (designated RFYAC-VNIITF) 1 kiloton nuclear artillery shell a distance of 17.4 km
An American eight-inch W33 nuclear artillery shell. This warhead had a number of different yield options (e.g., five kilotons). It could be fired from any standard eight-inch (203mm) howitzer (e.g., the M110 or M115)
Tactical weapons include not only gravity bombs and short-range missiles, but also artillery shells, land mines, depth charges, and torpedoes for anti-submarine warfare. Also in this category are nuclear armed ground-based or shipborne surface-to-air missiles (SAMs) and air-to-air missiles.
Small, two-man portable, or truck-portable, tactical weapons (sometimes misleadingly referred to as suitcase nukes), such as the Special Atomic Demolition Munition and the Davy Crockett recoilless rifle(recoilless smoothbore gun), have been developed, although the difficulty of combining sufficient yield with portability could limit their military utility. In wartime, such explosives could be used for demolishing "choke-points" to enemy offensives, such as at tunnels, narrow mountain passes, and long viaducts.
Other new tactical weapons undergoing research include earth penetrating weapons which are designed to target enemy-held caves or deep-underground bunkers.
There is no precise definition of the "tactical" category, neither considering range nor yield of the nuclear weapon. The yield of tactical nuclear weapons is generally lower than that of strategic nuclear weapons, but larger ones are still very powerful, and some variable-yield warheads serve in both roles. Modern tactical nuclear warheads have yields up to the tens of kilotons, or potentially hundreds, several times that of the weapons used in the atomic bombings of Hiroshima and Nagasaki.
Some tactical nuclear weapons have specific features meant to enhance their battlefield characteristics, such as variable yield which allow their explosive power to be varied over a wide range for different situations, or enhanced radiation weapons (the so-called "neutron bombs") which are meant to maximize ionizing radiation exposure while minimizing blast effects.
Risk of escalating a conflict
Use of tactical nuclear weapons against similarly-armed opponents carries a significant danger of quickly escalating the conflict beyond anticipated boundaries, from the tactical to the strategic. The existence and deployment of small, low-yield tactical nuclear warheads could be a dangerous encouragement to forward-basing and pre-emptive nuclear warfare, as nuclear weapons with destructive yields of 10 tons of TNT (e.g., the W54 warhead design) might be used less reluctantly at times of crisis than warheads with yields of 100 kilotons.
Russian OTR-21 Tochka missile. Capable of firing a 100 kiloton nuclear warhead a distance of 185 km
American MGR-3 Little John missile, measuring 4.4. meters long with a diameter of 32 cms and a weight of 350 kg. Capable of firing a W45 warhead (10 kiloton yield) a distance of 19 km
French Pluton missile circa 1970s. Capable of firing a 15 kiloton nuclear warhead a distance of 120 km
Red Beard, a British gravity bomb of the early 1960s with a destructive yield of 25 kilotons
For example, firing a low-yield nuclear artillery shell similar to the W48 (with a yield equivalent to 72 tons of TNT) at the enemy invites retaliation. It may provoke the enemy into responding with several nuclear artillery shells similar to the W79, which had a 1 kiloton yield. The response to these 1 kiloton nuclear artillery shells may be to retaliate by firing a tactical nuclear missile similar to a French Pluton (15 kiloton yield), Russian OTR-21 Tochka (100 kiloton yield) or the American MGM-52 Lance, fitted with a W70 variable yield warhead ranging between 1 and 100 kilotons. By using tactical nuclear weapons there is a high risk of escalating the conflict until it reaches a tipping point which provokes the use of strategic nuclear weapons such as ICBMs. Additionally, the tactical nuclear weapons most likely to be used first (i.e., the smallest, low-yield weapons such as nuclear artillery dating from the 1960s) have usually been under less stringent political control at times of military combat crises than strategic weapons. Early Permissive Action Links could be as simple as a mechanical combination lock. If a relatively junior officer in control of a small tactical nuclear weapon (e.g., the M29 Davy Crockett) were in imminent danger of being overwhelmed by enemy forces, he could request permission to fire it and due to decentralised control of warhead authorization, his request might quickly be granted during a crisis.
For these reasons, stockpiles of tactical nuclear warheads in most countries' arsenals have been dramatically reduced c. 2010, and the smallest types have been completely eliminated. Additionally, the increased sophistication of "Category F" PAL mechanisms and their associated communications infrastructure mean that centralised control of tactical nuclear warheads (by the country's most senior political leaders) can now be retained, even during combat.
Some variable yield nuclear warheads such as the B61 nuclear bomb have been produced in both tactical and strategic versions. Whereas the lowest selectable yield of a tactical B61 (Mod 3 and Mod 4) is 0.3 kilotons (300 tons), modern PAL mechanisms ensure that centralised political control is maintained over each weapon, including their destructive yields.
With the introduction of the B61 Mod 12, the United States will have four hundred identical nuclear bombs whose strategic or tactical nature will be set purely by the type of aircraft on which they are carried.
Comments
Post a Comment